Intermediate Values and Inverse Functions on Non-archimedean Fields
نویسندگان
چکیده
Continuity or even differentiability of a function on a closed interval of a non-Archimedean field are not sufficient for the function to assume all the intermediate values, a maximum, a minimum, or a unique primitive function on the interval. These problems are due to the total disconnectedness of the field in the order topology. In this paper, we show that differentiability (in the topological sense), together with some additional mild conditions, is indeed sufficient to guarantee that the function assumes all intermediate values and has a differentiable inverse function.
منابع مشابه
On Locally Uniformly Differentiable Functions on a Complete Non-Archimedean Ordered Field Extension of the Real Numbers
We study the properties of locally uniformly differentiable functions on N, a non-Archimedean field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. In particular, we show that locally uniformly differentiable functions are C1, they include all polynomial functions, and they are closed under addition, multiplication, and composition. Th...
متن کاملStochastic processes and antiderivational equations on non-Archimedean manifolds
Stochastic processes on manifolds over non-Archimedean fields and with transition measures having values in the field C of complex numbers are studied. Stochastic antideriva-tional equations (with the non-Archimedean time parameter) on manifolds are investigated. 1. Introduction. Stochastic processes and stochastic differential equations on real Banach spaces and manifolds on them were intensiv...
متن کاملAlgebras of non-Archimedean measures on groups
Quasi-invariant measures with values in non-Archimedean fields on a group of diffeomorphisms were constructed for non-Archimedean manifolds M in [Lud96, Lud99t]. On non-Archimedean loop groups and semigroups they were provided in [Lud98s, Lud00a, Lud02b]. A Banach space over a local field also serves as the additive group and quasi-invariant measures on it were studied in [Lud03s2, Lud96c]. Thi...
متن کاملNon-archimedean Nevanlinna Theory in Several Variables and the Non-archimedean Nevanlinna Inverse Problem
Cartan’s method is used to prove a several variable, non-Archimedean, Nevanlinna Second Main Theorem for hyperplanes in projective space. The corresponding defect relation is derived, but unlike in the complex case, we show that there can only be finitely many non-zero non-Archimedean defects. We then address the non-Archimedean Nevanlinna inverse problem, by showing that given a set of defects...
متن کاملTail order and intermediate tail dependence of multivariate copulas
In order to study copula families that have different tail patterns and tail asymmetry than multivariate Gaussian and t copulas, we introduce the concepts of tail order and tail order functions. These provide an integrated way to study both tail dependence and intermediate tail dependence. Some fundamental properties of tail order and tail order functions are obtained. For the multivariate Arch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002